If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x+21+3x^2=0
a = 3; b = 18; c = +21;
Δ = b2-4ac
Δ = 182-4·3·21
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{2}}{2*3}=\frac{-18-6\sqrt{2}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{2}}{2*3}=\frac{-18+6\sqrt{2}}{6} $
| y4+3=−8 | | 3x+12-6x=9 | | 12m+150=$1138 | | 19-5n=-2(6n+1) | | x+65+150=180 | | 8x-6/2=x/12 | | -3/4h=9/11 | | n-n+n-n+4n+2=10 | | -3x5=-5x2 | | 4x+5(×-1)=4x+30 | | -7+-5u=53 | | y/4+3=-8 | | 0.66x+4=0.16x-3 | | (x-3)+2x=-(x-5)=+4 | | 7+14=-3(4x-7) | | 3x+2=7+3x-5 | | 40+25x=40x | | (14x-3)=(85) | | –3+2n=3n | | 24+x/6(360)=84 | | u/5+11=18 | | 21x+4=17x+16 | | 2p-10=90 | | 84+4x=3x+92 | | -7(z-92)=-7 | | -4-7f=-9f | | =4x2-20x+25 | | 2(b+2)+b-6=34 | | −3x+40=10 | | 8x+7x=216+3x | | 3(1+d)–5=3d–2 | | 14s−12s−1=1 |